Notes

СНКОМ. 3326

Gas chromatographic separation of carbonyl fluoride and carbon dioxide

The simultaneous quantitative evaluation of CF_2O-CO_2 mixtures is important in numerous kinetic studies including the oxidation of C_2F_4 and the pyrolysis of CF_2O . The gas chromatographic analysis of CF_2O has been reported by $Cordes^1$ and Banks, Haszeldine and Sutcliffe. Unfortunately neither of the columns used can separate CF_2O-CO_2 mixtures. Heicklen and co-workers^{3,4} have measured CF_2O in gas mixtures by quantitatively converting the CF_2O to CO_2 on silica gel columns and measuring the CO_2 effluent. The purpose of this paper is to describe a gas chromatographic technique for the simultaneous quantitative determination of both CF_2O and CO_2 .

Experimental

Apparatus. An Aerograph model No. 202-B gas chromatograph equipped with a thermal conductivity cell was used for this study. Mixtures were introduced into the gas chromatograph through a gas sampling valve used in conjunction with a 2 ml sample volume. Peak areas were measured with a Disc Integrator (5000 counts per min) which was attached to a Sargent 10 in. recorder.

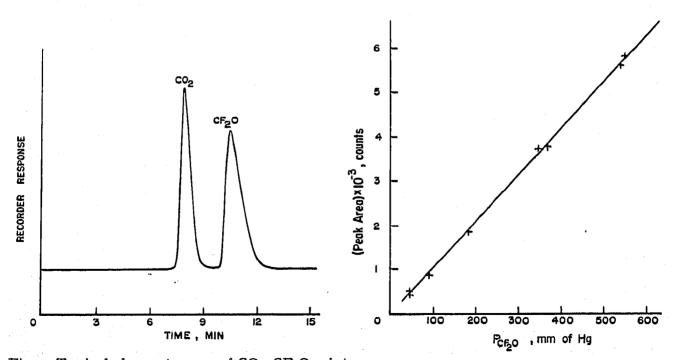


Fig. 1. Typical chromatogram of CO₂-CF₂O mixture.

Fig. 2. CF₂O peak area as a function of sample pressure.

Column materials and preparation. A 6 ft. composite column consisting of 2 ft. of 50/80 mesh Porapak (Waters Associate, Inc.) type T followed by 4 ft. of 50/80 mesh Porapak type N was used for the analysis. The column was packed in 1/4 in. O.D. Type 316 stainless steel tubing. Before final installation in the chromatograph, the column was heated to 200° and purged with helium (60 ml/min) for 2 h. Prior to each series of runs the column was conditioned by passing three 250 torr samples of CF₂O through it.

Results and discussion

A typical chromatogram indicating the separation of CF₂O and CO₂ as obtained with the column described above is given in Fig. 1. The operating conditions corresponding to the results given in Fig. I are: column temperature 23°; helium flow rate 60 ml/min. A plot of CF₂O peak area as a function of CF₂O pressure in the 2 ml sample volume is shown in Fig. 2. These results indicate that the detector response is linear over an eleven fold increase in CF₂O concentration. The curve given in Fig. 2 approaches the origin as the sample pressure is decreased. This behavior indicated that CF₂O absorption on this column is essentially nonexistent.

Acknowledgement

This research was sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under Grant number AF-AFOSR-1144-66.

Fluid Dynamics Laboratory, Department of Mechanical Engineering, University of Michigan, Ann Arbor, Mich. 48104 (U.S.A.)

GEORGE A. DRENNAN RICHARD A. MATULA

Received November 13th, 1967

J. Chromatog., 34 (1968) 77-78

CHROM. 3347

Synthetic diamond—A solid adsorbent for corrosive gases

A satisfactory chromatographic system for the analysis of corrosive halogen gases has proven to be an illusive objective. Recent publications¹⁻⁵ in this area are indicative of continuing difficulties encountered in the separation of these reactive materials. Primarily chromatographic separations have been concerned with inorganic penta- and hexa-fluorides, chlorine trifluoride and anhydrous hydrofluoric acid. No substrate or support has been recommended for gaseous mixtures containing

I K. L. CORDES, Chem. Ind. (London), (1966) 340.

2 R. E. BANKS, R. N. HASZELDINE AND H. SUTCLIFFE, J. Chem. Soc., (1964) 4066.

3 J. HEICKLEN, V. KNIGHT AND S. GREENE, J. Chem. Phys., 42 (1965) 221.

4 D. SAUNDERS AND J. HEICKLEN, J. Am. Chem. Soc., 87 (1965) 2088.